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We study an autonomous four-dimensional dynamical system used to model certain geophysical processes.
This system generates a chaotic attractor that is strongly contracting, with four Lyapunov exponents �i that
satisfy �1+�2+�3�0, so the Lyapunov dimension is DL=2+ ��3� /�1�3 in the range of coupling parameter
values studied. As a result, it should be possible to find three-dimensional spaces in which the attractors can be
embedded so that topological analyses can be carried out to determine which stretching and squeezing mecha-
nisms generate chaotic behavior. We study mappings into R3 to determine which can be used as embeddings to
reconstruct the dynamics. We find dramatically different behavior in the two simplest mappings: projections
from R4 to R3. In one case the one-parameter family of attractors studied remains topologically unchanged for
all coupling parameter values. In the other case, during an intermediate range of parameter values the projec-
tion undergoes self-intersections, while the embedded attractors at the two ends of this range are topologically
mirror images of each other.
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I. INTRODUCTION

Ten years ago Hide et al. �1� introduced a model for a
self-exciting Faraday disk dynamo as a simple analog for the
heat storage capacity in the oceans, thought to be a key factor
in the dynamical processes underlying the El Niño southern
oscillation. They noted that the equivalence of a capacitor to
a motor as a circuit element opened up the relevance of the
dynamo to the geomagnetic field.

Self-exciting Faraday disk dynamos are of interest since
they contain some of the key ingredients of large-scale natu-
rally occurring magnetohydrodynamic dynamos, while being
of considerably lower dimension and therefore more ame-
nable to systematic study. Many of the low-order dynamo
models of this family have rich ranges of behavior with ir-
regular reversals a common feature, as well as steady, peri-
odic, and coexisting states �due to hysteresis effects�. What
has been lacking has been a means of distinguishing between
these and other models as a prelude to comparing them with
the large-scale counterparts.

Recent investigations of several extensions to this original
model �2–6� have shown the classic Lorenz equations to re-
sult in a special limit when one of the key bifurcation param-
eters, �, which measures the inverse moment of inertia of the
armature of the dynamo motor, vanishes. In this paper we
focus on one of these models �3�, which we term the ex-
tended Malkus-Robbins �EMR� dynamo, since it reduces to
the Malkus-Robbins equations �7�, equivalent to a linearly
translated version of the Lorenz equations, when �=0. The
Malkus-Robbins equations are well known in dynamo stud-
ies.

The dynamical system that is studied is presented in Sec.
II. It is a Lorenz system coupled linearly to an external vari-
able whose behavior is coupled back into the Lorenz system.
It is a four-dimensional dynamical system with an internal
order-2 symmetry. The principal question we wish to address

is the following: what stretching and squeezing processes are
responsible for the dynamics, and how do they change as the
coupling strength changes? Questions of this type can be
addressed for three-dimensional chaotic attractors, for which
topological analyses can be carried out.

An analysis of the spectrum of Lyapunov exponents re-
veals that for sufficiently strong damping � on the external
variable the system is strongly contracting, with Lyapunov
dimension DL�3. As a result the attractor is three dimen-
sional �that is, in principle there is a three-dimensional mani-
fold in which the attractor can be embedded� so that a topo-
logical analysis can be carried out if a suitable embedding
can be found. Such an analysis is based on the unstable pe-
riodic orbits associated with the attractor. The method of
treating these orbits is described in Sec. III. In Sec. IV we
briefly review how linking numbers of unstable periodic or-
bits are computed in a three-dimensional embedding. Since
the chaotic attractor is “three dimensional” �DL�3� we be-
lieve it is possible to find an embedding of the attractor in
some three-dimensional space�s�. This is important and use-
ful because it is possible to determine the stretching and
squeezing mechanisms that generate chaotic behavior in
three-dimensional spaces, but it is not yet possible to do this
in higher-dimensional spaces. In Sec. V we review the two
simplest mappings, which are projections into three-
dimensional subspaces, and in Sec. VI we perform topologi-
cal analyses in both projections. These analyses show that
one projection is an embedding for all values of the coupling
parameter, the other only for extreme �small, large� values of
the coupling parameter. For intermediate values the projected
attractor exhibits self-intersections, and in fact turns itself
into its mirror image during the transition from small to large
values of this parameter. In Sec. VII we introduce a number
of other 1→1 mappings into three-dimensional phase
spaces, and in Sec. VIII we introduce two 2→1 mappings
into three-dimensional phase spaces. Topological analyses
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were carried out on images of all unstable periodic orbits up
to period 6 in each of these phase spaces. Results are sum-
marized in Table III below. Some mappings are embeddings
and others are not because of the nature of the coupling
between the variables. This coupling also has a direct impact
on the observability of a nonlinear system. The correlation
between embeddings and observability is presented in Sec.
IX. In Sec. X we describe typical Poincaré surfaces of sec-
tion in both 1→1 mappings and 2→1 mappings, and in Sec.
XI we present the associated return maps. We summarize our
results in Sec. XII. Topological analysis of all embeddings of
the attractors reveals a Lorenz stretching and tearing mecha-
nism at work to create the chaotic attractor.

II. DYNAMICAL SYSTEM EQUATIONS

The extended Malkus-Robbins dynamo equations are

Ẋ = ��Y − X� − �̂U ,

Ẏ = RX/� − Y − XZ ,

Ż = − �Z + XY ,

U̇ = X − �U �1�

with �̂=7.1111�. For further details of the meanings of the
variables and the positive parameters, see �3�. This four-
dimensional system is equivariant, that is, satisfies the sym-
metry

� · f�X� = f�� · X� . �2�

The equivariance matrix � is

� = �
− 1 0 0 0

0 − 1 0 0

0 0 + 1 0

0 0 0 − 1
� . �3�

This defines a symmetry in R4 which is a rotation about the Z
axis: RZ�	�. We will investigate in more detail two three-
dimensional subsets of variables, each inheriting a different
symmetry from Eq. �3�. These are the sets �X ,Y ,Z� and
�X ,Y ,U� with symmetries

�X,Y,Z� → �− X,− Y, + Z�, RZ�	�, rotation,

�X,Y,U� → �− X,− Y,− U�, P, inversion. �4�

In order to study this set of equations we fix the control
parameters �� ,� ,R� describing the Lorenz subsystem, and
allow � �principally� and � to vary. This is done in part to
make close contact with an earlier study �3�. The parameters
chosen for the Lorenz subsystem guarantee that for all values
of the bifurcation parameters � ,� used in this bifurcation
analysis, a chaotic attractor exists. We keep � in the range
�
0.5 to guarantee that the chaotic attractor is “three di-
mensional,” that is, DL�3 and a three-dimensional manifold

exists into which the attractor can be embedded.
For �=0 this set of equations describes the Lorenz dy-

namical system driving a linear dynamical system U with
damping �. There is no feedback since the U equation de-
couples, and the �X ,Y ,Z� subsystem is precisely the Lorenz
system. For ��0 the driven subsystem provides feedback
into the Lorenz system. We expect that for small values of
the coupling constant the three-dimensional subsystem
�X ,Y ,Z� will behave very much like the Lorenz system, but
for larger values of the coupling, departures from Lorenz-
like behavior will become evident. As a result, the dynamical
system was studied as a function of the coupling strength �.

As a first step in the analysis of this system we chose the
Lorenz parameters as �� ,� ,R�= �10,8 /3 ,74.667� so as to
produce a chaotic attractor for �=0. We also fixed the damp-
ing parameter for U at �=3.2. A bifurcation diagram for the
system was computed as a function of � in the range 0��
�7.9, at which point a boundary crisis destroys the attractor
�5�. The bifurcation diagram showed that the chaotic attrac-
tor persists without windows for this range of � values.

As a second step we computed the Lyapunov exponents
and the Lyapunov dimension as a function of �. The results
are shown in Fig. 1. In this range one Lyapunov exponent is
positive, one remains approximately zero, and two are
negative. The Lyapunov exponents limit at �=0 to those
of the Lorenz attractor �0.9027,0.0, −14.5691� including
�3=−�=−3.2.

For all values of � in this range the system is strongly
contracting. This means that the sum of the three largest
Lyapunov exponents is negative. As a consequence the
Lyapunov dimension DL is less than 3. The Kaplan-Yorke
estimate for DL=2+�1 / ��3� is also shown in Fig. 1. This
statistic is in the range 2.08�DL�2.29. Since the Lyapunov
dimension is less than 3, this system is effectively three di-
mensional. This means that it should be possible to find a
three-dimensional manifold in R4 that contains the attractor.
Below we refer to this DL-dimensional attractor as three di-
mensional since the manifold of smallest dimension that
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FIG. 1. Plot of the four Lyapunov exponents � j and the
Lyapunov dimension DL for the chaotic attractor generated by Eq.
�1� as a function of �. For these values the attractor is
effectively three dimensional. Parameter values: �� ,� ,R ,��
= �10,8 /3 ,74.667,3.2�.
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might possibly contain the attractor is three dimensional.
We point out in passing that as � decreases below the

value of the positive Lyapunov exponent �1=0.9027 the
Lyapunov dimension of the attractor increases above 3.0, at
least for small values of �.

III. PERIODIC ORBITS

Since the attractor is effectively three dimensional for all
values of � studied, a topological analysis can be carried out
to determine the mechanism generating chaotic behavior pro-
vided a three-dimensional embedding can be found. We an-
ticipate that the mechanism observed will be the same as the
mechanism generating the Lorenz attractor, but the represen-
tation of this mechanism may depend on the embedding cho-
sen �17�.

A topological analysis is based on the unstable periodic
orbits that exist in abundance in chaotic attractors. To per-
form this analysis it is sufficient to find only a relatively
small number of these orbits. The method of close returns �8�
was used in R4 to locate surrogates for unstable periodic
orbits. These orbits, in fact the entire unstable trajectory,
could be labeled by two symbols L and R, indicating passage
in the neighborhood of the left- or right-hand focus. The two
foci are clearly evident in Fig. 2, which shows projections of
the strange attractors from R4 into the X-Y plane, for three
values of �. Most of the orbits up to period 6 are present in
the chaotic attractor generated for all values of the parameter
�. The two period-1 orbits L and R are not present. We found
the period-2 orbit LR, two period-3 orbits, three period-4
orbits, and six period-5 orbits. This indicates that the topo-
logical entropy of this attractor is very high, slightly less than
ln 2.

In the topological analyses to be described, these orbits in
R4 were mapped into the spaces used for embedding at-
tempts.

IV. LINKING NUMBERS

Topological analyses proceed by determining how the un-
stable periodic orbits in a chaotic attractor are organized with
respect to each other. This organization is determined by the
linking numbers of pairs of periodic orbits �8,9�. Linking
numbers can be determined by computing a Gauss integral.
However, they are more simply computed by projecting the
two orbits from the three-dimensional space in which they
exist onto a two-dimensional surface. The orbits do not in-
tersect in three dimensions: this would violate the uniqueness
condition. However, they appear to intersect in the projec-
tion. Each intersection is given a sign ±1. The sign is deter-
mined as follows. Arrows indicating the flow direction are
assigned to the two crossing segments. The arrow closer to
the observer is rotated into the other arrow through the
smallest possible angle. If the rotation is clockwise the cross-
ing is assigned the crossing number +1; if counterclockwise
the crossing is −1. The linking number is half the sum of the
signed crossings of one orbit with the other. In Fig. 3 two
orbits are shown. These are extracted from a chaotic attractor
generated by Eq. �1� and projected into a three-dimensional

space. In this figure the five positive crossings identified in a
two-dimensional plane projection are indicated by � and the
single negative crossing is indicated by a �. The linking
number of this pair of orbits is therefore 1

2 �+5−1�= +2.
In four dimensions periodic orbits are not rigidly orga-

nized. Knots fall apart in four and higher dimensions. For
this reason the topological analyses can be carried out only
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FIG. 2. X-Y plane projection of the chaotic attractors generated
by the EMR equations Eq. �1� for different � values. 0.3 �a�, 3.8 �b�,
and 7.9 �c�. Parameter values: �� ,� ,R ,��= �10,8 /3 ,74.667,3.2�.
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in three-dimensional spaces at the present time. In three di-
mensions the organization of the unstable periodic orbits is
described by a branched manifold. This contains as many
branches as the number of symbols required to uniquely de-
scribe a trajectory in the chaotic attractor: in the present case,
four for the embedded attractors with symmetry and two for
those without. The branched manifold is uniquely deter-
mined by a small set of orbits. When the linking numbers of
all other pairs of periodic orbits are compatible with this
branched manifold, an embedding exists; when they are not
there is no embedding. In principle, linking numbers of all
periodic orbits should be checked; in practice, we have found
that checking the linking numbers of about half a dozen ad-
ditional orbits is sufficient �8–10�.

V. MAPPINGS INTO THREE-DIMENSIONAL SPACES

Before a topological analysis can be carried out, an em-
bedding of the attractor into a three-dimensional space must
be constructed. Many mappings are possible, but two are
essentially trivial. These are simple projections from R4 to R3

obtained by “forgetting” one of the four coordinates. Two
projections suggest themselves:

R4 → R3 Symmetry

�X ,Y ,Z ,U�→ �X ,Y ,Z� RZ�	�
�X ,Y ,Z ,U�→ �X ,Y ,U� P

�5�

Projections into the X-Y subspace from either of these three-
dimensional projections are shown in Fig. 2 for three values
of �. These figures show that as � increases the attractor
undergoes increasing curvature in the neighborhood of the
origin.

Other possible mappings include differential mappings
based on a single variable, for example X�t�
→ (X�t� , Ẋ�t� , Ẍ�t�). Similar mappings based on the other

variables are also possible. We finally also considered
2→1 mappings. These are treated in Sec. VIII.

VI. TOPOLOGICAL ANALYSES ON PROJECTIONS

A topological analysis was carried out on the projection of
the chaotic attractor into each of the two three-dimensional
subspaces suggested in Eq. �5�.

The first topological analysis was carried out on the pro-
jection �X ,Y ,Z ,U�→ �X ,Y ,Z�. Periodic orbits that were
identified in R4 were projected into this subspace and their
linking numbers were computed. This was done by counting
crossings in their projection to the X-Y plane. The orbits
were expected to be organized as they are in the Lorenz
dynamical system, at least for small values of �. The linking
numbers of the projected orbits were compared with those in
the Lorenz dynamical system, and described by the Lorenz
branched manifold with rotation symmetry. This branched
manifold is shown in Fig. 4�a�. The linking numbers of pe-
riodic orbits on this branched manifold are summarized in
Table I �10�. In this table the rows and columns are labeled
by the symbol name of an unstable periodic orbit found in
the chaotic attractor. The integer at the intersection of the

TABLE I. Linking numbers of orbits in the Lorenz branched
manifold with rotation symmetry, up to period 4. In the range
0���0.6, linking numbers of periodic orbits in the projected at-
tractor exhibit these values. In the range 5.4���7.9 linking num-
bers are the negatives of these values.

LR LLR LRR LLLR LRRR LLRR

LR 1 1 1 1 2

LLR 1 1 2 1 2

LRR 1 1 1 2 2

LLLR 1 2 1 1 2

LRRR 1 1 2 1 2

LLRR 2 2 2 2 2

-10 0 10
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-20

-10
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(RLLR)
(RLL)
Positive crossings
Negative crossings

FIG. 3. Two linked orbits projected onto a two-dimensional sur-
face. Positive crossings are indicated by � and the negative cross-
ing by a �. The linking number of the orbits is half the sum of
signed crossings: L�RLLR ,RLL�= �+5−1� /2= +2. Parameter val-
ues: �� ,� ,R ,��= �10,8 /3 ,74.667,3.2� and �=0.3.

(a)

(b)

FIG. 4. Branched manifolds for the Lorenz attractor with �a�
rotation and �b� inversion symmetry. Branched manifolds describe
the topological organization of all the unstable periodic orbits in a
chaotic attractor. The two branched manifolds shown are group con-
tinuations of one another �10�.

MOROZ, LETELLIER, AND GILMORE PHYSICAL REVIEW E 75, 046201 �2007�

046201-4



row labeled A and column labeled B is the linking number
L�A ,B� of these two orbits. In principle we should include all
orbits found in the attractor; in practice it is sufficient to use
a relatively small number of low-period orbits. In the present
case the linking number of just three orbits �three integers�
suffices to determine the branched manifold and the remain-
ing linking numbers �12 of them� serve to support this iden-
tification �8,9�.

For 0���0.6 the linking numbers of the projected or-
bits were compatible with the integers in this table. In the
range 0.6���5.4 we found that the table of linking num-
bers obtained from the periodic orbits was not compatible
with any branched manifold. Furthermore, each linking num-
ber systematically decreased by integer steps through zero,
finally assuming the negative of its value in the small-� re-
gion. In the range 5.4���7.9 the table of linking numbers
was the negative of that shown in Table I. As a consequence,
the branched manifolds describing the projections of the cha-
otic attractor in R4 into the �X ,Y ,Z� subspace are mirror
images of each other in the two disconnected ranges of �,
where the projection is an embedding. Figure 4�a� and its
mirror image both exhibit rotation symmetry.

Images of the chaotic attractor, projected into the three-
dimensional space with coordinates �X ,Y ,Z�, are shown in
Fig. 5. The orientation has been chosen to enable visualiza-
tion of the region of self-intersection. The projected attractor
changes handedness during the transition through the region
of self-intersections �in the projection� from small to large
values of �.

The projection �X ,Y ,Z ,U�→ �X ,Y ,U� into the subspace
where the attractor has inversion symmetry showed entirely
different behavior. The branched manifold for the Lorenz
attractor with inversion symmetry is shown in Fig. 4�b�. In
this projection the linking numbers should have values given
in Table II. The periodic orbits, projected from R4 into this
subspace, had linking numbers compatible with this table for
all values of �. We were thus able to conclude, through to-
pological analysis methods, that the projection �X ,Y ,Z ,U�
→ �X ,Y ,U� is an embedding for all values of � but that the
projection �X ,Y ,Z ,U�→ �X ,Y ,Z� is an embedding only for
some values of �. When there was an embedding, the
mechanism exhibited �tearing and squeezing� is the mecha-
nism that operates to generate chaotic behavior for the Lo-
renz attractor at comparable parameter values.

VII. ADDITIONAL MAPPINGS

We studied a number of other mappings to determine if
they were embeddings. These included differential mappings
based on each of the four coordinates. Under the mappings
based on the antisymmetric coordinates X, Y, and U, the
strange attractor exhibited an inversion symmetry, whether or
not the mapping was an embedding. The linking numbers of
the mapped orbits were compared with those shown in Table

II. Restricted differential embeddings of the form �V , V̇ ,Z�,
where the variable V was chosen to be each of the “antisym-
metric” variables X, Y, and U, were also studied. These ex-
hibited rotation �RZ� symmetry. Mappings of the strange at-

tractor into the two three-dimensional spaces �X , Ẋ , Ẍ� and

�X , Ẋ ,Z� can be projected to the same two-dimensional sub-

space �X , Ẋ�. This projection is shown in Fig. 6�a�. Projec-

tions into the �Y , Ẏ� and �U , U̇� subspaces are also shown in
this figure.
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FIG. 5. Chaotic attractor projected from R4�X ,Y ,Z ,U� into
R3�X ,Y ,Z� for three values of the parameter �= �a� 0.3, �b� 3.8, and
�c� 7.9. Self-intersections are evident for �=3.8. The two projected
attractors for �=0.3 and �=7.9 are described by branched mani-
folds that are mirror images of each other.
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The periodic orbits in R4 were mapped into three-
dimensional phase spaces under each of the six mappings of

the type �V , V̇ , V̈� and �V , V̇ ,Z�, with V an odd variable X, Y,
or U. Tables of linking numbers were computed for these
mapped orbits for various values of the parameter �. The
mappings depending on X and U provided embeddings for
all values of �. The two mappings depending on Y did not
provide embeddings for � in the range 0.6���5.4. These
results are summarized in Table III.

VIII. IMAGE ATTRACTORS

A differential mapping based on the even variable Z can-
not have the same topology as the embeddings based on the
odd variables, as seen in Fig. 7. Rather, the attractor recon-
structed from this variable �when this mapping is an embed-
ding� is a 2→1 image of the chaotic attractor generated by
Eqs. �1� �10�.

Other 2→1 images can be constructed. One that has often
been used is �X ,Y ,Z ,U�→ �X2−Y2 ,2XY ,Z� �10–12�. This
attractor is shown in Fig. 8 as it evolves under change of the
control parameter �. Other 2→1 images in R3 can be ob-
tained by replacing X or Y by U. In addition, 2→1 images
can also be obtained from �X ,Y ,U� by modding out the in-
version symmetry, that is, by building a representation of the
dynamics without any symmetry properties.

Periodic orbits in R4 were mapped into periodic orbits in
the 2→1 image attractors. The image orbits are also de-
scribed by two symbols 0 and 1 obtained from the symbolic
dynamics based on L and R of their covering orbits in R4 by
the following algorithm:

In R4 L→L R→R L→R R→L
In image 0 0 1 1

�6�

For example, the periodic orbit LLLR in R4 maps to a peri-
odic orbit with symbol name 0011 in the image. Linking
numbers for periodic orbits up to period 4 were computed in

the phase spaces generated by the embeddings �Z , Ż , Z̈� and
�X2−Y2 ,2XY ,Z� and compared with the linking numbers
contained in Table IV over the range of values of the param-
eter �. We found that the first mapping was an embedding
for all values of � while the second failed to be an embed-
ding in the parameter range 0.6���5.4. When an embed-
ding existed the dynamics was of Smale horseshoe type
�9,10�.

IX. OBSERVABILITY AND EMBEDDINGS

The results collected in Table III show that one-to-one
mappings depending on the variables X or U generally pro-
vide embeddings, while those depending on Y and Z some-
times do not. These observations are consistent with recent
results in observability theory �13,14�.

TABLE II. Linking numbers of orbits in the Lorenz branched
manifold with inversion symmetry.

LR LLR LRR LLLR LRRR LLRR

LR 0 0 0 0 0

LLR 0 0 +1 0 +1

LRR 0 0 0 −1 −1

LLLR 0 +1 0 0 +1

LRRR 0 0 −1 0 −1

LLRR 0 +1 −1 +1 −1
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FIG. 6. Differential embeddings based on the odd variables X,

Y, and U. Projections on the X-Ẋ �a�, Y-Ẏ �b�, and U-U̇ �c� planes.
Parameter values: �� ,� ,R ,��= �10,8 /3 ,74.667,3.2�.
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A system is fully observable from a variable when it is
possible to recover all the dynamical variables of the system.
It has been shown that the observability of a system, that is,
the quality with which the dynamics can be reconstructed
from a measured variable, depends on the choice of the ob-
servable �13�. In particular, it was shown that the observabil-
ity depends on the coupling between the dynamical vari-
ables. Basically, the lack of observability results from the
nonlinearities which introduce a singular set between the
original phase space and the reconstructed space. This is a
set of points of the original phase space that cannot be ob-
served in the reconstructed space. Thus, it is possible to lo-
cate where the nonlinearities are acting directly from a graph
displaying the couplings between the variables as follows
�14�. The interactions between the dynamical variables can
be defined using the elements of the Jacobian matrix of the
vector field f i�xj�, where ẋi= f i�xj�. Variable xj acts on vari-
able xi when the term Jij of the Jacobian matrix is nonzero.
This action is positive or negative depending on the sign of

element Jij. These interactions can be displayed as a graph.
Each variable xi is represented by a node Ni. When the vari-
able j is present in the functions f i, an arrow is drawn from
node Nj to node Ni. When the variable only appears in a
linear term, the arrow is drawn with a solid line. If a variable

TABLE III. Variables used in searches for embeddings of the
chaotic attractor generated by Eq. �1�. If the mapping failed to be an
embedding, it did so in the range 0.6���5.4.

Variables Type Embedding?

�X ,Y ,Z� 1→1 N

�X ,Y ,U� 1→1 Y

�X , Ẋ , Ẍ� 1→1 Y

�Y , Ẏ , Ÿ� 1→1 N

�Z , Ż , Z̈� 2→1 Y

�U , U̇ , Ü� 1→1 Y

�X , Ẋ ,Z� 1→1 Y

�Y , Ẏ ,Z� 1→1 N

�U , U̇ ,Z� 1→1 Y

�X2−Y2 ,2XY ,Z� 2→1 N

0 10 20 30 40 50
Z(t)

-200

-100

0

100

200

300

400

dZ
/d

t

FIG. 7. Z-Ż plane projection of the differential embedding based
on the even variable Z. Parameter values: �� ,� ,R ,��
= �10,8 /3 ,74.667,3.2� and �=3.8.
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FIG. 8. Plane projections of the image attractors �X ,Y ,Z ,U�
→ �u ,v ,Z� with u=X2−Y2, v=2XY, for three values of �= �a� 7.9,
�b� 3.8, and �c� 0.3. A great deal of twisting takes place in the
neighborhood of the origin. Parameter values: �� ,� ,R ,��
= �10,8 /3 ,74.667,3.2�.
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appears in a nonlinear term, the arrow is drawn with a dashed
line. The graph of interactions between the dynamical vari-
ables of the EMR dynamo equations is shown in Fig. 9.
Using such a graphical representation, the best observable
for a given set of equations can be identified without any
analytical computation.

When a variable is measured, it is known. Taking one of
its successive time derivatives corresponds to moving along
the arrows that reach this variable in the opposite direction,
contrary to the arrow. In the case of the EMR dynamo equa-
tions, the Lyapunov dimension suggests that a three-
dimensional embedding can be sufficient. This means that,
depending on the observability associated with the “mea-
sured” variable, the dynamics could be embedded within a
three-dimensional reconstructed space. For variables with a
low observability, a higher-dimensional phase space could be
required. Using the graphical approach introduced in �14�, it
is possible to identify the best observable�s� as follows. Let
us assume the U variable is measured. Taking its first deriva-
tive allows us to reach the X and U variables but not the Y
and the Z variables since there is no arrow from NY to NU
and from NZ to NU �Fig. 10�. It is necessary to take the
second derivative of U to reach node NY according to the
arrow from NY to NX. Since all the arrows involved are as-
sociated with linear couplings, there is no need to compute
the third derivative of U to ensure having an embedding of
the original four-dimensional dynamics. Indeed, the lack of

nonlinearities in the second derivative Ü prevents the exis-
tence of a singular set between the original four-dimensional

phase space and the three-dimensional differential embed-
ding induced by the U variable. Since the nonlinearities are
directly responsible for the lack of observability, the sooner
the nonlinearities occur in the derivative, the less observable
the dynamics is. For this reason, the dynamics underlying the
EMR dynamo equations is less observable from the Y or Z
variables than from the X variable. In other words, a higher-
dimensional space can be required in the worst cases. As
suggested by Table III, the lack of observability from the Y
variable is sufficiently important to forbid a three-
dimensional embedding, even when the Z variable is mea-
sured too.

X. POINCARÉ SECTIONS

Strictly speaking, Poincaré sections for the dynamical sys-
tem Eq. �1� are three dimensional. Since the chaotic attractor
that is generated by these equations is three dimensional, it
was useful to construct Poincaré sections in the three-
dimensional phase spaces introduced by the mappings that
are summarized in Table III. For the mappings whose pro-
jections are shown in Fig. 2, the global Poincaré surface of
section consists of the union of two half planes �15,16�. In

TABLE IV. Linking numbers of periodic orbits in Smale horse-
shoe dynamics �8�.

1 01 001 011 0011 0001 0111

1 1 1 1 1 1 2

01 1 2 2 2 2 3

001 1 2 3 3 3 4

011 1 2 3 3 3 4

0011 1 2 3 3 4 4

0001 1 2 3 3 4 4

0111 2 3 4 4 4 4

U

X Y

Z

FIG. 9. Graph showing the couplings between the dynamical
variables of the EMR dynamo equations.
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FIG. 10. Unfolded schematic view of the variables reached
when the first and second derivatives are computed. A nonlinearity
in the first derivative �a dashed arrow between the observable and
its first derivative� induces a more serious lack of observability than
when a nonlinearity occurs in the second derivative �a dashed arrow
between the first and the second derivatives of the observable�.
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the case of the projection �X ,Y ,Z ,U�→ �X ,Y ,Z�, one com-
ponent of the global Poincaré surface of section can be cho-
sen as the half plane �X=Y ,Z� anchored on the line X=Y

�9.5, which passes approximately through the focus. The
other component is the mirror image half plane. Similar ar-
guments apply to the projection �X ,Y ,Z ,U�→ �X ,Y ,U� and

the embeddings such as �X , Ẋ , Ẍ�, etc. The intersection of the
attractor, projected into �X ,Y ,Z�, with the Poincaré surface
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FIG. 11. �a� Intersections of the chaotic attractor with the two
components of the global Poincaré surface of section X=Y = ±9.5,
�=3.8. �b� First-return plot for the intersections of the attractor with
the global Poincaré surface of section. �c� Return map based on
parametrization of the intersection shown in �b�, with s parametriz-
ing the left-hand intersection and t parametrizing the right-hand
intersection. Parameter values: �� ,� ,R ,��= �10,8 /3 ,74.667,3.2�.
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FIG. 12. For the image attractor shown in Fig. 8 with �=7.9: �a�
Intersection with a Poincaré section �b� Return map based on coor-
dinate un. The separation between the two cusps increases with �.
�c� Return map based on parametrization of the intersection shown
in �a�. Parameter values: �� ,� ,R ,��= �10,8 /3 ,74.667,3.2�.
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of section is shown in Fig. 11�a�. The form of this intersec-
tion remained basically unchanged for all values of the pa-
rameter � in all the 1→1 mappings that were studied.

In the case of the 2→1 mappings, the image attractor
exhibited a hole in the middle. This means that the global
Poincaré surface of section is connected. It consists of a
single half plane that is anchored on an axis passing through
the focus. The intersection of the image attractor with such a
half plane has the form shown in Fig. 12�a�. This is clearly a
2→1 image of the intersection shown in Fig. 11�a�. Again,
the V shape of this intersection was the same in both map-
pings and remained basically unchanged for all values of the
parameter �. The most noticeable effect was that as � in-
creases from small to large values the separation between the
two cusps in Fig. 12�b� increases linearly.

XI. FIRST-RETURN MAPS

Simple forward mapping of the intersections of the cha-
otic attractor with the Poincaré section produces results
shown in Figs. 11�b� and 12�b�. These are not strictly first
return maps since the functions shown are not single valued.

In order to produce a more useful result we parametrized
the V-shaped intersections with geometric coordinates. That
is, we introduced a parameter s to measure position along the
intersection of the attractor with the left half plane in Fig.
11�c�. This parameter decreased with increasing X linearly
along the lower branch from s=0 at X�−11 to s=0.5 at X
�−17, then increased along the upper branch from s=0.5 at
the cusp to s=1.0 at X�−10.5. A geometric parameter t was
introduced in a similar �symmetric� way to parametrize the
intersection with the right-hand branch. The first-return map
on the geometric parameters s and t is shown in Fig. 11�c�.
This is very similar to the first-return map previously ob-
tained for the Lorenz attractor �15,16�.

A similar parametrization for the intersections of the
2→1 image attractors �cf. Fig. 12�b�� was also carried out.
The return map on that parameter is shown in Fig. 12�c� for
the �X2−Y2 ,2XY ,Z� mapping. The other 2→1 mapping

�Z , Ż , Z̈� was similar. As � was increased, the return map
changed in two ways. The singularity in the slope at s=0.5
became less pronounced, and the regions of near vertical
slope �extreme instability� moved outward, to larger values
of �s−0.5�. At the same time the spectrum of unstable peri-
odic orbits remained almost unchanged. There was almost a
complete symbolic dynamics on two symbols. This indicates
that the topological entropy of these attractors, as well as the
original covering attractors, was close to ln 2.

XII. SUMMARY AND CONCLUSIONS

We have studied a four-dimensional dynamical system
that is designed to model the behavior of a self-exciting ho-
mopolar Faraday disk dynamo. This system is essentially the
Lorenz system with feedback. The coupling is implemented
by a fourth variable U, which is driven by the X variable of
the Lorenz system, and feeds back into the dynamics by
driving X through a coupling parameter of strength �. We
studied the dynamics generated in the range 0���7.9 for
fixed control parameter values of the Lorenz system
�� ,� ,R�= �10,8 /3 ,74.667�. The variable U is damped with
�=3.2. The one-parameter ��� family of chaotic attractors
that is generated is three dimensional.

In order to carry out topological analyses, we have at-
tempted to find three-dimensional embeddings of the attrac-
tor. Of the two obvious mappings constructed by projection,
one mapping �X ,Y ,Z ,U�→ �X ,Y ,Z� fails to provide an em-
bedding for intermediate values of �. Furthermore, the
branched manifolds describing the projected attractors in the
small-� and large-� limits are mirror images of each other:
they are both of Lorenz type with rotation symmetry. The
other projection �X ,Y ,Z ,U�→ �X ,Y ,U� does provide an em-
bedding for all values of � studied. The branched manifold
describing all attractors in this projection is a Lorenz
branched manifold with inversion symmetry. The branched
manifolds obtained in these two projections are related by
group continuation �10�. They describe the same stretching
and tearing mechanism.

Similar tests for embeddings and topological analyses
were carried out in several other faithful �1↔1� and 2→1
image representations of the dynamics. In general, carrying
out the analysis in the image is simpler than in the cover
since the global Poincaré surface of section has only one
connected component. We found generally that an almost
complete dynamics on two symbols was present for all val-
ues of �. For fixed � all embeddings �even mappings that
were not embeddings� exhibited an identical spectrum of or-
bits �or image orbits�. When an embedding existed the table
of linking numbers obtained from these orbits was compat-
ible with a branched manifold. When an embedding did not
exist, this compatibility did not exist. In such cases, orbits
whose linking numbers were incorrect were those that visited
regions of the mapped chaotic attractor undergoing self-
intersections.
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